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A high-frequency sum-rule expansion is derived for all elements of the spinless 
quasi-one-dimensional quantum plasma response tensor at T= 0 K. As in the 
magnetized classical plasmas, we find that f~4 ~3 is the only coefficient of ~0-4 that 
has no correlational term. Further, we find that the correlations either enhance 
or reduce the negative quantum dispersion, depending on the direction of 
propagation. It is also noted that the quantum effect does not exist for the 
ordinary and the extraordinary modes for perpendicular and parallel propaga- 
tion, respectively. 

1. INTRODUCTION 

High-frequency sum-rule expansions of  the full response tensor of 
classical one-component plasmas in the absence and presence of an external 
magnetic field are known (Kalman and Genga, 1986; Genga, 1988)o 
However, for quantum plasmas with spinless particles the existing results 
pertain to the absence of  an external magnetic field (Genga, submitted). In 
this case we consider the high-frequency sum-rule expansion to order oJ-5 
for the full response tensor of quasi-one-dimensional quantum nonrelativis- 
tic plasmas with spinless particles at T = 0 K. 

In this work we treat an electron plasma in a constant, homogeneous 
magnetic field quantum mechanically. While treating the magnetic field 
exactly, a perturbation approach in the photon field is used in deriving the 
general expressions for the dielectric tensor (Canuto and Ventura, 1972). 
In laboratory plasmas the magnetic field is of order 105 G, which is very 
small compared to the 1015G found in pulsars. At superstrong magnetic 
fields such as those probably associated with neutron stars we find that 
when the Fermi energy of  the electrons is lower than the excitation energy 
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of the Landau levels, i.e., p 2 / 2 m  << h[l,  only the lowest n = 0 level is popu- 
lated, and the mobility of the electrons is therefore entirely determined by 
the value of momentum along the z axis, i.e., Pz, thus giving rise to a 

one-dimensional quantum plasma. Low density, as well as an intense mag- 
netic field, is necessary for this situation to be realized. 

Since we are considering an anisotropic system in the presence of an 
external magnetic field, we calculate the high-frequency sum-rule expansion 
for the six independent elements of the dielectric tensor of the quasi-one- 
dimensional quantum plasmas. The method of derivation is reviewed below. 
In Section 2 we calculate the e x a c t  0) -2,  0) -3,  0.) -4,  and 0.)-5 sum-rule 
coefficients for the full response tensor; in Section 3 the long-wavelength 
limit of the results of Section 2 is considered. Strong coupling effects on 
the high-frequency modes, i.e., the plasma mode and the high-frequency 
extraordinary mode for propagation parallel and perpendicular to the 
magnetic field respectively, are determined in Section 4. The results of 
Section 2 are obtained by using the same method as the one shown in the 
Appendix of Genga (in press) for magnetic field-free case. 

The total electric current at point x~ is given by 

e 
j(x) = ~ E [Vi 6 ( x -  xi) + 6(x - xi)Vi] (1) 

i 

where 

--~[ -{-efli~ t)] (2 )  Vi = P i  c c 

xi, Vi, P~, A~ and A(x;, t) correspond to the position, velocity, momen- 
tum, external field vector, and self-consistent field vector of the ith particle, 
respectively. In Fourier transform language equation (1) becomes 

(J~(to)) = e<j~(to))+ e ~ N  T~"Ak(W)  (3) mc 
where 

T~ ~' = 1 - k ~ k " / k  2 (4) 

We replace the Fourier transform of equation (1) by its expectation value 
to obtain equation (3), since we are only interested in the response function 
of the electron system. By applying perturbation theory (Genga, in press; 
Pines and NoziOres, 1966), we find that 

e 2 
( j ~ ( w ) )  = - - -  E ~o-'<olH"k(~')ln)(N ~-~(o)lo) C np 

[ 1 1 ] A~,(to) 
x to - to~o(P, P + h k / 2 )  + iv 0.) + tono(P, P - h k / 2 )  + irl 

(5) 
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where 

II~= 1 ~[ l l~exp( ik .x , )+exp( ik .x~)H~]  
2m 

117 = p ?  +e.4~ 
C 

(6) 

and for the arguments of  Woo as well as the summation over p in equation 
(5) 

P = Pz, k = kz (7) 

Then, by combining equations (3) and (5) we obtain 

tr"~(kto) = - - i e2 [x~(k to )+NT~l to  (8) 

where X "~ is the current-current response tensor defined as 

X~"(ktO) = y (0[H~(r)ln)(nlH~-k(0)10) 
np 

x tO-tO~o(p,p+fik/2)+i~7 tO+o)no(p,p-hk/2)+i~7 (9) 

Since the polarizability tensor, a "~ and the conductivity tensor o -"~ are 
related, i.e., 

4rre 2 
oef*"(ktO) : i tr""(ktO) 

tO 

we find that equation (8) can be expressed as 

2 
tOp 

a~(ktO)  =--~ T~~' + c~(ktO)  (10) 
tO 

where 

X/xv 
5~'~(kto) = -4zre 2 -"T (kto) (11) 

tO 

In this work we consider equation (11), since the first term in equation (10) 
is already in the expansion form. The matrix elements and excitation 
frequencies that appear in equation (9) are those appropriate for a system 
of electrons with Coulomb and external magnetic field interactions, but 
without any transverse self-consistent magnetic field interactions. 
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2. SUM RULES 

The complete modified polarizability tensor 6~ (k )  is expressible in 
terms of the corresponding "external" quantities c~(kco) as (Genga, in 
press) 

&(kw) = t~(A- t~)A (12) 

where 

A = 1 -- n 2 T ,  n = k c / t o ,  T = 1 - k .  k / k  2 (13) 

This is because a~'~(kw) possesses the well-known high-frequency sum-rule 
expansion (Genga, in press) 

A 

l)~+~(k) (14) gw"~(k~~ = -  ~ l + l  

1=1 s 
/ = o d d  

A 

~f+x(k) (15) t~ n"g"(kt~ = -  ~ 1+1 
1 = 2  O) 

/ = e v e n  

-~/zv 
as a (k~o) in the classical case (Kalman and Genga, 1986; Genga, 1988). 
The superscript H stands for "Hermitian part of," and prime and double 
prime denote "real part of" and "imaginary part of,'" respectively. As in 
the magnetic field-free case (Genga, in press) the l) "~ coefficients are 
calculated from the relation 

^ 

O~'+l(k) = 4"rre 2 E {[~ P - h k / 2 ) ] ~ - 2 ( O l I I ~ l n ) ( n [ I I ~ - l ,  lO) 
np 

- [ - W , o ( p , p +  h k / 2 ) ] t - 2 ( O l I I ~ _ k l n ) ( n l I I ~ l O ) } , = o  (16) 

It is also known (Kalman and Genga, 1986; Genga, 1988, and in press) 
that the high-frequency expansion of 6"~(kw) becomes similar to that of 
t~"~(kw) as given by equations (14) and (15), with f~fl(k) replacing the 
corresponding l)?-~1 (k). The relationships between the two sets of coefficients 
up to l = 4 a r e  

^ 

1)2 ~ -  . , • (17) 
- f14  -122 f12 

A ^ ^ ^ A 

-f15 - ~ 2  ~q3 - ~ 3  f12 

The Hamiltonian of the system that satisfies equation (16) is given by 

II~+l 
H = E ~ -  2 2 V(x i - x j )  ( 1 8 )  

i z r n  i# j  
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where V(x i -x j )  is the interaction potential between a pair of particles and 
is independent of velocity�9 

We now turn the calculation of the frequency moments (up to 1 = 4). 
Since we are considering an anisotropic system in the presence of an external 
magnetic field, 6 "~ is nondiagonal (Genga, 1988). In this case both even 
and odd moments of ~ f f l  exist. The real diagonal and off-diagonal elements 
satisfy the symmetric condition 

~ ~+l(k) -- f i  7+~, (k) (19) 

and the imaginary off-diagonal elements satisfy the antisymmetric condition 

f i?.~,(k) - ~" = -f~,+,(k) (20) 

as in classical plasmas (Oenga, 1988). 
The first moment leads to 

I(OlII~[n)(n]II ~-k[O) 4 ^ r (~ ~-~l">(' ln ~1~ 
f i ~ ( k ) = 4 ~ e 2 ;  L W.o(p,p+h/2) W.o(p,p-hk/2)  J 

=o2L "~ (21) 

The second moment yields 

O ~ ( k )  = 4~'e 2 Z (<olII~l n>(nlII ~dO)-(OIII Zkl n)(nlII~lO)) 

= � 8 9  ns n~]lO>) 
�9 2eBO 

_ zwp e~,, (22) 
m c 

The third moment is given by 

~2"(k) =4cre2 ~ [ W.o (p, p -  h-~2 ) (OlH ~ln>(n]H~]O) 
np 

+o o ~ 

= 2~-ea(oI[[nL HI ,  rlS~] + [ [~I~,  HI ,  n~]lO> 
2 0 

_ wpeB. k,~(Ole.m, a 
2mc Ox '~ 

+ e.n,~ O__O_+ eo, m. O + ie.m.e,~nt~ eB ~ x~lO ) 
Ox ~ Ox" 2me 

(.O2pen ~ 

4me Ox 2me 
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_ 2 o e ~ " ~ e B  ~ 
~~ k . s . , ~  (OI ~ Xt310) 

4 m c  Ox '~ + 2 m c  

_ 2 o e - i  0 2 
o~peB, k . k ~ ( O i 2 m c ( B O ) _  1 ~ +  i e ~ , ~ x a _ ~ _  ie~,~x~ 0 

2 m c  Ox" ox  ~ Ox Ox ~' 

2 o e-~ 02 
+ e ~ ' " e ~ ' ~  eB~ ~ (x~)210) a, p e B ,  k~k~(OlEmc(BO)_  ~ -  

2 m c  " ' " 2 m c  Ox '~ Ox ~" 

(x~Yl~ 

2 0 
_ w . e B ,  k , ,k ,~(Oi2mc(BO)_ 1 e -~ a z e~ '~x  ~ a 

2 m c  Ox ~ ax  ~ Ox ~" 

o n o  o 
_ ie~, ,~x~ _ ~,~.%t~.~ ~ ,  x = x ~ l O ) + ~ o a ( O l t ,  U 

Ox ~ 2 m c  

1 
+ - -  Z L ~ v ( S k - .  - Sq)lO) 

N q  

The fourth moment  yields 

4"rre 2 <oln ~l.><nln ~-~1o> 

[ r -w .o  [ h k \ ]  2 
~ P ' P + - 2 - )  ] (~176176 

= 2~e2<01[[[II% H],  H] ,  II ~_k]- [[[II~_k, H],  H],  II~][0) 

_ e2(B  o ~2 

4 m c  

e o 0 eZ(B~ 2 0 

r n c  OX a 8 m 2 r  2 OX ~ 

+~""'~ . , , , eZ(B~ ~ 0 (B ~ 1 6 2  

8m2c  z Ox" 16m3c 3 

w ~ e B  ~ 0 2 
+ i6e"n'~e~"~' eB~ Ox 10)+ mc n k'~k~'(Oli7e ' ~ ' -  

OX '~ OX ~ 

+~e . ,~e~ ,~  eB~ ~ a + i7e , , ,%~, ,~  
e 2 ( B ~  2 

m c  Ox ~ m 2 c  ~ (x~ YI~ 

2 o 0 2 e B ~  O 
+ ~  k~k~(Ol i~e~ , .  + ~ze~'n'~e'~,~ x ~ - -  

4 m c  Ox '~ Ox '~ mc  Ox ~' 

(23) 
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where 

2 ( B ; ) 2  2 o 02 
+ i]e~,%~, t3  e ~  (x~)2]O) + t opeB ,  k~k . . (Ol i6s~ ,~  

4 m c  Ox ~' Ox ~ 

02 ~2 eB o 
- -  q- i~e v,~ ~ 3 ,~rlot omTot 

+ i6s  ~'~ Ox,~ Ox" Ox '~ Ox '~ mc 

+3eV.q.e,~nflelJ,Tx €  ~ 0 +3e~n~s~nt3eB~ 0 
rnc Ox ~ mc Ox ~ 

+ i ~ - e ~ ' % " ~ s  ~'~ e 2 ( B ~  2 ( x ~ ) 2 +  i e . .~ s  ~,~ eB ~ x~10) 
m 2  c 2 m c  

4 0 
+ iwpeB, (0IL~§177 I E L q  E l...,q )[ , .~k_q-- ~k)lk/~ 

2mc  n 
(24) 

L ~ " =  k ~k~ ' / k  2 (25) 
~/L/J 

To obtain an explicit expression for ~'~l+l(k), we  choose the k-system, in 
which 

k = ( 0 , 0 ,  k) 

B ~ = B ~ = B ~ sin 0 

B ~ = B ~ = 0 (26) 

B ~ = B ~ = B ~ cos 0 

and 

qx = q l = q sin 0 cos 0 

qy = q2 = q sin 0 sin ~b (27) 

qz = q3 = q cos 0 

In order  to obtain the componen t s  o f  the external magnet ic  field as given 
in equat ion (26), one has (Landau  gauge) A ~  B ~  ~ 0). 

3. L O N G - W A V E L E N G T H  L I M I T  

In the long-wavelength (k--> 0) limit, we find f rom equat ions (22)-(24) 
that the elements o f  the f requency moments  are given by 

l ~ l ( k )  = l~2(k)  = 0 

= 

~ 2 ( k )  = l )~ (k )  = i~o~fl cos 0 
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~ 2 3 ( k )  = f132(k) = ito~l~ sin 0 

2 
1~1~(k ) = - ~  top E . . . .  k2 

m 
^ 

~')13(k) = 0  

2 
_A 22 ~5 (.Op ~'~4 (k) . . . .  E .... k 2 

m 
r 2 " 3  02 

fi33(k) = 0)~ - - ~ s  - 4 E  ... .  ) k2 

f i ~ 2 ( k ) = _ f i ~ ( k ) = .  2 I P F . 1 6 ~  ~ 
lr -- ~kT--]~l.~corr] ~mm COS 0 

fi23(k) = - l~Z(k)  = ioJ~l-'/ 1 02 24 - - -  i~E .... sin 0 

(28) 

I0) can easily be shown to be of the form 

10) = (2~r)-l/2A - l  e(Y-Y~ 4 A 2 _~_ ipz/ h (29) 

where 

A = -h/m~"l 

2Cpy 
Y O  ~ - -  - -  

e 

y = B z x -  Bxz = Cpy 
e 

(30) 

eB ~ 

m c  

and the last term is the the electron cyclotron frequency. From^equation 
(28) ^we find that the correlational terms of ~4 ~1, 1~422, 1) 33, 1)~ 2, 
and ~ 3  are of the same order as their corresponding ones in the classical 
case (Genga, 1988). E .... is the (negative) correlation energy per particle 
and pO is the lowest Landau Level Fermi momentum. 

4. STRONG COUPLING EFFECTS ON PLASMA DISPERSION 

In this section correlational effects on the undamped high-frequency, 
quasi-one-dimensional plasma waves, in an external magnetic field, are 
determined by using high-frequency sum rules (HFSR-s). We limit our 
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problem to quantum nonrelativistic plasmas with spinless particles at T = 
0 K. Although the method is exact, it is not very reliable for the calculation 
of the dispersion relation (Genga, 1988). The high-frequency modes of 
interest are the "ordinary" and the "extraordinary" modes; the extraor- 
dinary mode under consideration is the one with cutoff frequency to2 = 
�89 All the modes propagating along and across the 
external magnetic field are considered. We use a coordinate system where 
k = (0, 0, k) and B ~ is in the x-z plane, i.e., k-system. 

We study the behavior of  the system by applying a small perturbation 
to the dispersion relations (Genga, 1988). As a result of this a frequency 
shift due to correlations occurs. The frequency shift due to correlations is 
of order k 2, and thus is small as k ~ 0  and is equal to the order of the 
frequency shift due to quantum effects. 

4.1. Propagation Parallel to Magnetic Field 

In this case only the longitudinal and extraordinary modes exist (Genga, 
1988). The longitudinal mode oscillates at the plasma frequency. 

4.1.1. Longitudinal Mode 

The dispersion relation 

e33(ko)) = 1 + a33(kto) = 0 (31) 

determines the behavior of  longitudinal plasmons. After a small perturbation 
is applied to the dispersion relation the plasmon frequency becomes 

1 [ (P(~ 4 ] k  2 
~o2(k) = o ) ~ - - -  3 ~ E  .... (32) 

/7/ m 

The correlations are seen to increase the negative quantum dispersion for 
finite k. 

4.1.2. Extraordinary Mode 

The dispersion relation that determines the behavior of the extraor- 
dinary mode is 

(t~11(kto) - n2) 2 - e'22(ko)) = 0 (33) 

The ensuing frequency can be written as 

~o2(k) = ~o~ 1 + k 2 (34) 
15m to~ ] 

In this case we see that the correlations enhance the positive refractive 
dispersion for finite k. It is also noted that the quantum effect on the 
dispersion does not exist. 
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4.2. Propagation Perpendicular to Magnetic Field 

Unlike the case of propagation along the magnetic field, here we have 
a pure transverse mode, called the "ordinary mode,"  and a coupled trans- 
verse-longitudinal one, called the "extraordinary mode." The dispersion 
relation for the ordinary mode is 

e11(kto) - n 2 = 0 (35) 

and that for the extraordinary mode is 

[e22(w) - n2] e33(ko)) - e~3(kto) = 0 (36) 

4.2.1. Ordinary Mode 

After applying a small perturbation to the dispersion relation, we find 
that the ensuing frequency becomes 

2 ( 2 -  2 E .... ) k  2 (37) w2(k)=o)p+ c 15m 

The effect of correlations is seen to enhance the positive refractive dispersion. 
We also note that there is no quantum effect on the dispersion. 

4.2.2. Extraordinary Mode 

In this case the expression for the frequency is 

mw~(3eF--~E .... )k2]} (38) 

where eF = (P~~ is the Fermi energy per particle. We see that correla- 
tions increase the negative quantum dispersion for finite k. The total quan- 
tum and correlation effects reduce the positive refractive dispersion for 
finite k, unlike the case of parallel propagation. 
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